

Abstract: We study μ_p -actions on K3 surfaces in char p.

NB: Smooth K3 surfaces admit no μ_p -actions since they admit no global derivations. However RDP K3 surfaces may admit some.

Preliminaries

• A K3 surface is a proper smooth (algebraic) surface X over a field with $\Omega_X^2 \cong \mathcal{O}_X$ and $H^0(X, \mathcal{O}_X) = 0.$ • An RDP K3 surface is a proper surface Xwith only RDP (rational double point) singularities whose resolution X is a K3.

Main Def: symplecticness

Action $\mu_n \curvearrowright \operatorname{Spec} B$ (affine scheme) \leftrightarrow a decomposition $B = \bigoplus_{i \in \mathbb{Z}/n\mathbb{Z}} B_i$ of vector spaces satisfying $B_i B_j \subset B_{i+j}$. \rightarrow a decomp. $\Omega^*_{B/k} = \bigoplus_{i \in \mathbb{Z}/n\mathbb{Z}} (\Omega^*_{B/k})_i.$ We say that wt(b) = i if $b \in B_i$. Similar for μ_n -actions on schemes. **Remark.** If $p \nmid n$, then μ_n -action is equivalent to the action of the cyclic group $\mu_n(k)$, and B_i is the eigenspace for the $\mu_n(k)$ -action with eigenvalue $i: \mu_n(k) \ni g \mapsto g^i \in k^*$. **Definition.** We call an action $\mu_n \curvearrowright X$ on an RDP K3 to be **symplectic** if the decomposition of (1-dim vector space) $H^0(X^{\rm sm}, \Omega_X^2)$ is concentrated on $i = 0 \in \mathbb{Z}/n\mathbb{Z}$. **Remark.** $H^0(X^{\mathrm{sm}}, \Omega^2_X) \cong H^0(X, \Omega^2_{\tilde{X}})$ for an RDP K3 X (hence 1-dim). Remark. Equivalent to the classical definition if $p \nmid n$ (in which case $\mu_n \cong \mathbb{Z}/n\mathbb{Z}$).

Proof of A (symplectic case) Suffices to consider (symplectic) μ_p -actions. Write $\pi: X \to Y = X/\mu_p$. Then $\mathcal{O}_Y =$ $(\mathcal{O}_X)_0.$ **Lemma.** Suppose $z \in X$: a fixed point (smooth or RDP), and μ_p -action symplectic at z. Then z is an isolated fixed point, and

Definition. An automorphism of a K3 Xis **symplectic** if it acts on the (1-dim vector space) $H^0(X, \Omega^2_X)$ trivially.

Nikulin: actions in char 0

G: finite abelian group, X: K3. $G \curvearrowright X$: a symplectic action. Then • Fix(G) is isolated. • X/G is an RDP K3. • If $G = \mathbb{Z}/n\mathbb{Z}$ with n > 1, then $n \leq 8$ and $\#\operatorname{Fix}(G) = \frac{24}{n} \prod_{l:\operatorname{prime}, l|n} \frac{l}{l+1}$ = 8, 6, 4, 4, 2, 3, 2 (n = 2, 3, 4, 5, 6, 7, 8).

Non-symplectic quotients

are either birational to Enriques, or rational.

Actions in char *p*?

Theorem A

X: RDP K3, with an action $\mu_n \curvearrowright X$. • symplectic $\implies X/\mu_n$: RDP K3. • non-symplectic $\implies X/\mu_n$: RDP Enriques or rational.

• n = p, non-symplectic, fixed-point-free $\implies X/\mu_p$: RDP Enriques $\implies p=2.$

 $\pi(z)$ is an RDP.

Proof. If z is smooth, then $\exists x, y$: coordinate with weight $a, b \in \mathbb{Z}/p\mathbb{Z}, \neq 0$. We have a + b = 0 since symplectic. Then $\mathcal{O}_{Y,\pi(z)} =$ $k[[x^p, xy, y^p]]$: RDP of type A_{p-1} . If z is an RDP, consider $\mu_p \curvearrowright \operatorname{Bl}_z X$ and reduce to the smooth case. Cf: action of finite subgroup of $SL_2(\mathbb{C})$. **Lemma.** Suppose $z \in X$: a non-fixed RDP. Then $\pi(z)$ is smooth or RDP. **Remark.** This is a new feature. **Example.** A_{pm-1} $(xy + z^{pm} = 0)$, with action wt(x, y, 1 + z) = (0, 0, 1): quotient is $A_{m-1} (xy + Z^m = 0 \text{ where } Z = z^p).$ Lemma. Outside the fixed locus and the RDPs, $(\pi_*(\Omega_X^2))_0 \cong \Omega_Y^2$.

From the lemmas, Y has only RDPs as singularities, and $H^0(Y^{\rm sm}, \Omega_V^2)$ is 1-dim.

Proof of C

Nikulin's results hold in char p > 0 provided the order of G is prime to p. However, automorphisms of order p are automatically symplectic, since there are no nontrivial p-th root of unity in char p. • \exists order p auto with 1-dim fixed locus, • \exists order p auto with non-K3 quotient. **Remark.** \exists order p auto only if $p \leq 11$. For more discussions see Dolgachev–Keum.

Keum: Orders of auto.

 $S_{\text{cyc}}(p) := \{n \mid \mathbb{Z}/n\mathbb{Z} \curvearrowright \exists X \text{ K3 in char } p\}.$ Keum determined this set for $p \neq 2, 3$. • $S_{\text{cyc}}(0) = \{n \mid \phi(n) \le 20\}$ • $S_{\text{cyc}}(p) = S_{\text{cyc}}(0) \setminus E_p$ if $p \ge 5$, where $\{p, 2p\}$ if p = 13, 17, 19,

• n = p, non-symplectic, not fixed-point-free $\implies X/\mu_p$: rational surface.

Theorem B

X: RDP K3.

 $\mu_n \curvearrowright X$: symplectic action, n > 1. Then \bullet $n \leq 8$, \bullet Fix(G) is isolated, • $\# \operatorname{Fix}(G) = \operatorname{same}$ as in Nikulin's theorem, when counted with suitable multiplicity.

Theorem C

 $S_{\mu}(p) := \{ n \mid \mu_n \curvearrowright \exists X \text{ RDP K3 in char } p \}.$ • $S_{\mu}(0) = S_{\text{cyc}}(0) = \downarrow$.

 $= \{1, \ldots, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 36, 38, 40, 42, 44, 48, 50, 54, 60, 66\},\$ • $S_{\mu}(p) = S_{\mu}(0) \setminus E'_p$, where $\{33, 66\}$ if p = 11, if p = 5, $\{25, 40, 50\}$

If $p \nmid n$, this follows from Keum's result. We consider the case $p \mid n$. Write $n = p^e r, p \nmid r$. X has an RDP z (since a smooth K3 has no μ_p -action). We may assume it is not fixed by μ_{p^e} (otherwise, blow it up). We classify all non-fixed actions on RDPs. and check that $n \in S_{\mu}(0) \setminus E'_{p}$ in all cases. Typical case: $p \neq 2$, the μ_r -orbit of z has r/2elements, each of type A_{p^e-1} , and μ_2 acts on z non-symplectically. In this case we deduce $(r/2)(p^e - 1) < b_2(K3) = 22$. This almost implies $n \in S_{\mu}(0) \setminus E'_{p}$, and we kill few exceptions individually.

Examples for C: n = 34 $X(p): y^2 = x^3 + t^7x + t^2$ in char p. • X(0) is Kondo's example of an RDP K3 (A_1, A_2) with a μ_{34} -action $(\operatorname{wt}(x, y, t) =$ (4, 23, 6)) or equivalently a $\mathbb{Z}/34\mathbb{Z}$ -action.

[5] Yuya Matsumoto, μ_n -actions on K3 surfaces in positive characteristic (2017), available at http://arxiv.org/abs/1710.07158.