A NOTE ON MY PAPER ON K3 SURFACES WITH SHIODA–INOSE STRUCTURES

YUYA MATSUMOTO

ABSTRACT. We fix a gap, pointed out by Tianchen Zhao, on my paper [2] on good reduction of some K3 surfaces with Shioda–Inose structures.

0.1. The involution on product Kummer surfaces over a field. Let F be a field of characteristic $\neq 2,3$ and C_1, C_2 be two elliptic curves over F. Suppose that 2-torsion points of C_1 and C_2 are all F-rational. Let $X = \text{Km}(C_1 \times C_2)$ be the Kummer surface attached to $C_1 \times C_2$, that is, the minimal resolution of the quotient $(C_1 \times C_2)/\{[\pm 1]\}$, where $[-1]: C_1 \times C_2 \to C_1 \times C_2$ is the inversion map. The minimal resolution is given by the blowup of $(C_1 \times C_2)/\{[\pm 1]\}$ at the images of the 16 2-torsion points of $C_1 \times C_2$. We consider the following divisors of X:

- u_i (i = 0, 1, 2, 3) and v_j (j = 0, 1, 2, 3) are the strict transforms of the images of $\{p_i\} \times C_2$ and $C_1 \times \{q_j\}$, where $\{p_i\} \subset C_1$ and $\{q_j\} \subset C_2$ are the 2-torsion points.
- w_{ij} $(i, j \in \{0, 1, 2, 3\})$ are the exceptional curves above the images of (p_i, q_j) .
- $D_0 = v_0 + v_1 + v_2 + 2w_{30} + 2w_{31} + 2w_{32} + 3u_3$.
- $D_{\infty} = u_0 + u_1 + u_2 + 2w_{03} + 2w_{13} + 2w_{23} + 3v_3$.

Let $\Phi: X \to \mathbb{P}^1$ be the elliptic fibration having D_0 and D_∞ as fibers: such a fibration is unique up to automorphisms on \mathbb{P}^1 . We declare w_{00} to be the zero section of the fibration. Let $\iota_1: X \to X$ be the involution that preserves the fibration Φ and induces [-1] on each smooth fiber (in other words, it is the unique extension of the inversion [-1] on the generic fiber). Let $\iota_2: X \to X$ be the involution induced by $[1] \times [-1]$ on $C_1 \times C_2$ (or equivalently by $[-1] \times [1]$). Finally, let $\iota = \iota_1 \iota_2: X \to X$.

0.2. Relative version over DVRs. Let \mathcal{O}_K be a DVR with fraction field K and residue field k, neither of characteristic 2, 3. For a scheme \mathcal{X} over Spec \mathcal{O}_K , its generic fiber and the special fiber are denoted by \mathcal{X}_K and \mathcal{X}_k respectively.

Let C_1 and C_2 be two elliptic curves over \mathcal{O}_K . Suppose that 2-torsion points of $(\mathcal{C}_1)_K$ and $(\mathcal{C}_2)_K$ are all K-rational. Let $\mathcal{Z} \subset (\mathcal{C}_1 \times_{\mathcal{O}_K} \mathcal{C}_2)/\{[\pm 1]\}$ be the closure of the set of the images of the 16 2-torsion points of $(\mathcal{C}_1)_K \times (\mathcal{C}_2)_K$. (\mathcal{Z} consists of 16 components each isomorphic to $\mathbb{P}^1_{\mathcal{O}_K}$.) Then we define $\mathcal{X} = \operatorname{Km}(\mathcal{C}_1 \times_{\mathcal{O}_K} \mathcal{C}_2)$ to be the blowup of $(\mathcal{C}_1 \times_{\mathcal{O}_K} \mathcal{C}_2)/\{[\pm 1]\}$ at the closed subscheme \mathcal{Z} .

Define $\mathcal{U}_i, \mathcal{V}_j, \mathcal{W}_{ij}, \mathcal{D}_0, \mathcal{D}_\infty \subset \mathcal{X}$ as in Section 0.1. Then it follows [2, Proposition 2.5] that there is a morphism $\Phi \colon \mathcal{X} \to \mathbb{P}^1_{\mathcal{O}_K}$, defined by the "linear system" $H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}(\mathcal{D}_0)) \cong \mathcal{O}_K^{\oplus 2}$, that the induced morphisms $\Phi_K \colon \mathcal{X}_K \to \mathbb{P}^1_K$ and $\Phi_k \colon \mathcal{X}_k \to \mathbb{P}^1_k$ are as in Section 0.1.

Tianchen Zhao asked me the following.

Date: 2025-01-31.

Question. Are there involutions ι_1, ι_2, ι on \mathcal{X} that induce the ones as in Section 0.1 on each fiber?

In [2] we stated that we define $\iota: \mathcal{X} \to \mathcal{X}$ "similarly", but we realized that this cannot be done in a completely similar way. In this note we fix this gap.

Proposition 0.1. Let C_1 and C_2 be as above. Let $X = \text{Km}((C_1)_K \times (C_2)_K)$ and let $\iota \in \text{Aut}(X)$ as in Section 0.1. Then, after replacing K with an unramified extension of a bounded degree, there exists a smooth proper ι -model \mathcal{X}^+ of X, that is, a smooth proper model \mathcal{X}^+ together with an involution $\iota_{\mathcal{X}^+} : \mathcal{X}^+ \to \mathcal{X}^+$ that induces ι on $(\mathcal{X}^+)_K = X$.

We prove this in Section 0.4 after introducing the terminology in Section 0.3.

Here, \mathcal{X}^+ is not assumed to be isomorphic to \mathcal{X} given above, but this result is enough to derive the main theorem of [2].

0.3. **Preliminary.** We fix some terminology. Let \mathcal{O}_K, K, k be as in Section 0.2. Let X be a K3 surface over K.

Definition 0.2. A smooth proper model of X is a scheme \mathcal{X} smooth and proper over \mathcal{O}_K endowed with an isomorphism $\alpha \colon \mathcal{X}_K \xrightarrow{\sim} X$. Usually the isomorphism α is omitted from the notation.

Suppose $g \in \operatorname{Aut}(X)$ is an automorphism. A smooth proper g-model of X is a smooth proper model (\mathcal{X}, α) endowed with an automorphism $g_{\mathcal{X}} : \mathcal{X} \to \mathcal{X}$ compatible with α (that is, $\alpha \circ (g_{\mathcal{X}})_K = g \circ \alpha$).

Definition 0.3. Now suppose \mathcal{X} is a proper \mathcal{O}_K -scheme endowed with a birational equivalence $\alpha \colon \mathcal{X}_K \xrightarrow{\sim} X$, which is not necessarily a morphism. A *g*-model is such an \mathcal{X} endowed with an automorphism (not only a birational self-map) $g_{\mathcal{X}} \colon \mathcal{X} \to \mathcal{X}$ compatible with α , that is, $\alpha \circ (g_{\mathcal{X}})_K = g \circ \alpha$ as rational maps.

Remark 0.4. Although it is often useful to consider smooth proper models that are algebraic spaces (not necessarily schemes) (see [3] and [1]), in this note we restrict our considerations to schemes.

Remark 0.5. If \mathcal{X}_1 and \mathcal{X}_2 are two smooth proper models of X, then there is an obvious isomorphism $(\mathcal{X}_1)_K \cong (\mathcal{X}_2)_K$ and we also have an isomorphism $(\mathcal{X}_1)_k \cong (\mathcal{X}_2)_k$ ([1, Proposition 4.7]), but the models \mathcal{X}_1 and \mathcal{X}_2 themselves are not necessarily isomorphic (see [1, Section 4] for a further discussion).

Definition 0.6. A birational proper morphism $\mathcal{X} \to \mathcal{X}'$ between proper \mathcal{O}_{K} -schemes is a *simultaneous resolution* of \mathcal{X}' if it induces the minimal resolution of a surface on each fiber over K and k. We use this notion only when all fibers of \mathcal{X} are K3 surfaces.

Remark 0.7. Again, a simultaneous resolution is not unique in general.

0.4. Corrected construction of ι in the relative setting. Brief sketch: Although we do not know whether \mathcal{X} is an ι -model, we can construct a birational proper morphism $\mathcal{X} \to \mathcal{X}''$ that is a simultaneous resolution of an ι -model \mathcal{X}'' . Each connected component of the non-isomorphic locus of this morphism is not ι -stable. Using this property, we can modify $\mathcal{X} \to \mathcal{X}''$ into $\mathcal{X}^+ \to \mathcal{X}''$, where \mathcal{X}^+ is another smooth proper model to which ι extends.

3

Lemma 0.8. Suppose $\mathcal{X} \to \mathbb{P}^1_{\mathcal{O}_K}$ is as in Section 0.2. Let \mathcal{D} be one of \mathcal{D}_0 and \mathcal{D}_∞ , and let \mathcal{Z} be one of the sections (e.g. \mathcal{W}_{00}). Then, for non-negative integers m and n, the \mathcal{O}_K -module $M = H^0(\mathcal{X}, \mathcal{O}(m\mathcal{D} + n\mathcal{Z}))$ is free, and the natural morphisms

$$M \otimes_{\mathcal{O}_K} k \to H^0(\mathcal{X}_K, \mathcal{O}(m\mathcal{D} + n\mathcal{Z})_K), \quad and$$
$$M \otimes_{\mathcal{O}_K} k \to H^0(\mathcal{X}_k, \mathcal{O}(m\mathcal{D} + n\mathcal{Z})_k)$$

are isomorphisms.

Proof. Since dim_{*} $H^0((\mathcal{X})_*, \mathcal{O}(m\mathcal{D} + n\mathcal{Z})_*)$ is independent of $* \in \{K, k\}$ (in fact, this value is the same for any elliptic fibration with section over a field), this follows from a well-known result on cohomology of fibers (see [2, Lemma 2.6(2)]).

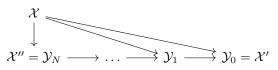
Let $\mathcal{X} \to \mathcal{X}'$ be the morphism to the Weierstrass model, constructed as the image of the projective morphism $\mathcal{X} \to \mathbb{P}^N_{\mathcal{O}_K}$ defined by using the linear system $H^0(\mathcal{X}, \mathcal{O}_{\mathcal{X}}(7\mathcal{D} + 3\mathcal{Z}))$. This formation commutes with taking the fibers over Spec \mathcal{O}_K by the lemma. Then \mathcal{X}' is an ι -model. We can assume that \mathcal{D}_0 and \mathcal{D}_∞ are the fibers over $0, \infty \in \mathbb{P}^1$ respectively.

Let $X \to Y_N \to Y_{N-1} \to \cdots \to Y_1 \to Y_0 = (\mathcal{X}')_K \xrightarrow{\Phi_K} \mathbb{P}^1_K$ be the sequence defined by the following.

- $Y_{i+1} \to Y_i$ is the blowup at the union $Z_i \subset Y_i$ of the singular points of Y_i lying above $\{0, \infty\} \subset \mathbb{P}^1_K$, when there exist such singular points. It follows that $X \to Y_i$ factors through Y_{i+1} .
- Y_N has no singular points lying above $\{0, \infty\}$.

Next we construct $\mathcal{Y}_N \to \mathcal{Y}_{N-1} \to \cdots \to \mathcal{Y}_1 \to \mathcal{Y}_0 = \mathcal{X}'$ by letting \mathcal{Y}_{i+1} be the blowup at the closure \mathcal{Z}_i of Z_i in \mathcal{Y}_i . It follows that each \mathcal{Z}_i is a disjoint union of connected components each isomorphic to Spec \mathcal{O}_K , and that the fibers of $(\mathcal{Y}_N)_k \to \mathbb{P}^1$ above 0 and ∞ are smooth (both of type IV^{*}). We also note that \mathcal{Y}_N is an ι -model, since the center of each blowup is ι -stable.

We show by induction on i $(1 \le i \le N)$ that $\mathcal{X} \to \mathcal{Y}_{i-1}$ factors through \mathcal{Y}_i . By the universal property of the blowup, it suffices to show that the inverse image of $\mathcal{Z}_{i-1} \subset \mathcal{Y}_{i-1}$ in \mathcal{X} is a Cartier divisor. We show that the inverse image is equal to $\mathcal{O}_{\mathcal{X}}(\sum_j a_j \mathcal{C}_j)$, where \mathcal{C}_j are the components of $\mathcal{D}_0 \cup \mathcal{D}_\infty$ (= $\Phi^{-1}(\{0,\infty\})$) and a_j are suitable non-negative integers. To show the equality, since \mathcal{Z}_{i-1} and $\mathcal{O}_{\mathcal{X}}(\sum_j a_j \mathcal{C}_j)$ are flat over \mathcal{O}_K , it suffices to show it after passing to fibers over K and k. Then the claim follows from the fact that the description of the resolution of the RDP of type E_6 is independent of the base field (at least outside characteristic 2 and 3).



We thus obtain a morphism $\psi \colon \mathcal{X} \to \mathcal{X}'' \coloneqq \mathcal{Y}_N$. This is a simultaneous resolution, and $\iota \circ \psi \colon \mathcal{X} \to \mathcal{X}''$ is another. We do not know whether \mathcal{X} is an ι -model: this is equivalent to the existence of the dashed arrow in the following diagram.

The idea is to modify some part of \mathcal{X} to obtain a new smooth proper model \mathcal{X}^+ for which the dashed arrow exists.

Let $\Phi_k^{-1}(t_i)$, $1 \leq i \leq M$, be the singular fibers of $\Phi_k \colon \mathcal{X}_k \to \mathbb{P}_k^1$ other than $(\mathcal{D}_0)_k$ and $(\mathcal{D}_\infty)_k$. By passing to an unramified extension of K, we can assume that all t_i are k-rational points of \mathbb{P}_k^1 . Let $P_i \in \operatorname{Sing}((\mathcal{X}'')_k)$ be the corresponding singular points, which are also k-rational. We have the following.

- Each $Q \in \text{Sing}((\mathcal{X}'')_K)$ is K-rational, and the intersection of $(\mathcal{X}'')_k$ with the closure of Q in \mathcal{X}'' is one of P_i .
- The set $\operatorname{Sing}((\mathcal{X}'')_K) \cup \operatorname{Sing}((\mathcal{X}'')_k)$ is closed and each of its connected components contains exactly one of P_i .

Therefore, a simultaneous resolution of \mathcal{X}'' is determined by its restrictions to neighborhoods of P_i .

Let $\sigma: \{1, \ldots, M\} \to \{1, \ldots, M\}$ be the involution characterized by $\iota(P_i) = P_{\sigma(i)}$. It is fixed-point-free since $t \mapsto -t$ is fixed-point-free outside $\{0, \infty\} \subset \mathbb{P}^1$.

For each *M*-tuple $\epsilon = (\epsilon_i) \in \{\pm 1\}^M$, let $\mathcal{X}^{(\epsilon)} \to \mathcal{X}''$ be the simultaneous resolution whose restriction to a neighborhood of P_i is isomorphic to $\psi \colon \mathcal{X} \to \mathcal{X}''$ if $\epsilon_i = 1$ and to $\iota \circ \psi \colon \mathcal{X} \to \mathcal{X}''$ if $\epsilon_i = -1$.

We observe that $\iota: \mathcal{X}_{K}'' \to \mathcal{X}_{K}''$ extends to an isomorphism $\iota: \mathcal{X}^{(\epsilon)} \to \mathcal{X}^{(\iota^{*}(\epsilon))}$, where $\iota^{*}(\epsilon)$ is the *M*-tuple with *i*-th entry $-\epsilon_{\sigma(i)}$. In particular, \mathcal{X}^{ϵ} is an *ι*-model if and only if ϵ is *ι*-invariant, that is, $\iota^{*}(\epsilon) = \epsilon$, that is, $-\epsilon_{\sigma(i)} = \epsilon_{i}$. Since σ is fixed-point-free, there exists such ϵ .

Acknowledgements. We thank Tianchen Zhao for pointing out the issue.

References

- Christian Liedtke and Yuya Matsumoto, Good reduction of K3 surfaces, Compos. Math. 154 (2018), no. 1, 1–35.
- [2] Yuya Matsumoto, On good reduction of some K3 surfaces related to abelian surfaces, Tohoku Math. J. (2) 67 (2015), no. 1, 83–104.
- [3] _____, Good reduction criterion for K3 surfaces, Math. Z. 279 (2015), no. 1-2, 241-266. Email address: matsumoto.yuya.m@gmail.com Email address: matsumoto_yuya@rs.tus.ac.jp

4